PREDICTION AND ASSESSMENT OF DROUGHT EFFECTS

Authors

  • Borut Vrščaj Kmetijski inštitut Slovenije, Center za tla in okolje, Ljubljana
  • Tomaž Vernik Kmetijski inštitut Slovenije, Center za tla in okolje, Ljubljana
  • Andrej Ceglar Univerza v Ljubljani, Biotehniška fakulteta, Ljubljana
  • Zalika Črepinšek Univerza v Ljubljani, Biotehniška fakulteta, Ljubljana
  • Alenka Šajn Slak CGS plus, d. o. o, Ljubljana
  • Matjaž Ivačič CGS plus, d. o. o, Ljubljana

Abstract

The response time to natural disasters and the mitigation of their effects is more effective with an established monitoring system. The system is based on the available real-time data in appropriate formats. We have established a system for prediction and assessment of drought effects in real time. It is based on soil data from the ground, plant water demands and agrometeorological parameters using GIS algorithms. Databases are designed to assess the ability of soil water retention and plant water demand. A system of agrometeorological data processing in real time was established, a model for the assessment of water balance implemented and a web portal for visualisation of drought effect on selected agricultural crops designed.

References

Agencija Republike Slovenije za Okolje, 2009. Arhiv meteoroloških in fenoloških podatkov. Med-mrežje: http://www.arso.gov.si/o%20agenciji/knji%C5%BEnica/mese%C4%8Dni%20bilten (19. 12. 2009).

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations.

Cressie, N., 1993. Statistics for spatial data. Wiley Interscience, 900 str.

Dolinar, M., 2006. Prostorska interpolacija konvektivnih padavin z uporabo radarskih in prizemnih meritev. Magistrsko delo, Ljubljana, FMF, 2006.

Gregorič, G. in Sušnik, A., 2004. Vključevanje mrež za posebne obratovalne monitoringe v skupen meteorološki informacijski sistem. V: Ranljivost slovenskega kmetijstva in gozdarstva na podnebno spremenljivost in ocena predvidenega vpliva. ARSO.

Hörmann, G., 2003. SIMPEL – A family of simple soil water models. Medmrežje: http://www.hydrology.uni-kiel.de/~schorsch/simpel/englisch/simpel_english.pdf (20. 1. 2009).

Kajfež Bogataj, L., Kurnik, B., 2004. Enostavne metode za izračun referenčne evapotranspiracije. Novi izzivi v poljedelstvu 2004: Zbornik simpozija. Ljubljana, Slovensko agronomsko društvo, 2004. str. 128–135.

Kastelec, D., Košmelj, K., 2002. Statistical Interpolation of Mean Yearly Precipitation using Universal Kriging. Developments in Statistics. Metodološki zvezki, 17, Ljubljana. FDV, 2002, str. 149–160.

Kurnik, B., 2001. Primerjava različnih metod za izračun referenčne evapotranspiracije v Sloveniji. Fakulteta za matematiko in fiziko, Univerza v Ljubljani, Diplomsko delo, 66 str.

Matajc, I., 2001. Summary on the IRRFIB model. Agencija Republike Slovenije za Okolje, 2001: Medmrežje: http://agromet-cost.bo.ibimet.cnr.it/fileadmin/cost718/.../irrfib.pdf. (20. 1. 2009).

Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683–691.

Vrščaj, B., Vernik, T., Bergant, J. in Čuden, I., 2009. Vzpostavitev sistema multidisciplinarnih informacij prostora za napovedovanje in ocenjevanje škod po naravnih nesrečah v kmetijstvu: ciljni raziskovalni program Znanje za varnost in mir 2006–2010: projekt M2-0220: končno poročilo. Delovni sklop 1, Izboljšava podatkov tal, (KIS – Poročila o raziskovalnih nalogah, 338). Ljubljana: Kmetijski inštitut Slovenije.

Published

19-01-2024

Issue

Section

Research and development