MULTICHANNEL ANALYSIS OF SURFACE WAVES (MASW) TO DETERMINE SHEAR WAVE VELOCITY

Authors

  • Andrej Gosar Ministrstvo za okolje in prostor, Agencija RS za okolje, Urad za seizmologijo, Ljubljana

Abstract

Understanding the shallow shear-wave velocity structure is important for seismological ground motion studies and for geotechnical engineering (e.g. landslide investigations), but it is quite difficult and expensive to derive this structure through conventional geophysical techniques, e.g. seismic refraction method. Multichannel analysis of surface waves (MASW) is therefore a valuable alternative, and one which was developed in the last decade. The method is based on dispersion of surface (mostly Rayleigh) seismic waves, which have lower frequencies (1-30 Hz) then body waves. In active MASW method seismic waves are generated using impacts of a sledgehammer, whereas in passive MASW method ambient noise of natural and artificial origin is used. By inverting the surface wave dispersion curve, a one-dimensional model of shear-waves velocity variation with depth is obtained. This model is used in seismology to determine the effects of soft sediments on seismic ground motion and in geotechnical engineering to determine the shear strength or danger of sliding.

References

CEN, 2004. Eurocode 8 – Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, European standard, EN 1998-1: 2004 (E), Stage 64, European Committee for Standardization, Brussels.

D'Amico, V., Picozzi, M., Baliva, F., Albarello, D., 2008. Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy. Bull. Seis. Soc. Am., 98, 1373—1388.

Garcia-Jerez, A., Navarro, M., Alcala, F. J., Luzon, F., Perez_Ruiz, J. A., Enomoto, T., Vidal, F., Ocana, E., 2007. Shallow velocity structure using joint inversion of array and h/v spectral ratio of ambient noise: The case of Mula town (SE of Spain). Soil. Dyn. Earthq. Eng., 907—919.

Gosar, A., 2007. Raziskave vpliva lokalne geološke zgradbe na potresno nihanje tal in ranljivosti objektov z mikrotremorji. Geologija, 50/1, 65—76.

Gosar, A., Stopar, R., Rošer, J., 2008. Comparative test of active and passive multichannel analysis of surface waves (MASW) and microtremor HVSR method. RMZ–Materials and Geoenvironment, 55/1, 67—83.

Hayashi, K., Inazaki, T., Suzuki, H., 2006. Buried incised-channels delineation using microtremor array measurements at Soka and Misato Cities in Saitama Prefecture. Bull. Geol. Surv. Japan, 57/9-10, 309—325.

Fäh, D., Suhadolc, P., Mueller, S., Panza, G. F., 1994. A hybrid method for the estimation of ground motion in sedimentary basins: quantitative modelling for Mexico City. Bull. Seism. Soc. Am., 84/2, 383—399.

Idriss, I., Sun, J. I., 1992. User's manual for Shake91, a computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits. University of California, Davis.

Lapajne, J., 1970. Seizmična mikrorajonizacija Ljubljane. Geofizikalne raziskave 1969—1970. Geološki zavod Ljubljana.

Lapajne, J., Šket Motnikar, B., Zupančič, P., 2001. Karta potresne nevarnosti Slovenije – projektni pospešek tal. Uprava RS za geofiziko.

Louie, L. N., 2001. Faster, Better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bul. Seism. Soc. Am., 91, 347—364.

Okada, H., 2003. The microtremor survey method. Society of Exploration Geophysicists, 135 str.

Park, C. B., Miller, R. D., Xia, J., 1999. Multichannel analysis of surface waves (MASW). Geophysics, 64, 800—808.

Park, C. B., Miller, R. D., Ryden, N., Xia, J., Ivanov, J., 2005. Combined use of active and passive surface waves. Journal of Engineering and Environmental Geophysics, 10/3, 323—334.

Park, C. B., Ivanov, J., Brohammer, M., 2006. SurfSeis 2.0 user manual. Kansas Geological Survey, 38 str.

Park, C. B., Miller, R. D., Ryden, N., Xia, J., Ivanov, J., 2007. Multichannel analysis of surface waves (MASW)-active and passive methods. The Leading Edge, 26/1, 60—64.

Roth, M., Holliger, K., 1999. Inversion of source-generated noise in high-resolution seismic data. The Leading Edge, 18/12, 1402—1406.

Sheriff, R. E., Geldart, L. P., 1995. Exploration seismology. Cambridge University Press, 592 str.

SIST, 2004. Slovenski standard SIST EN 1998-1 Evrokod 8: Projektiranje potresnoodpornih konstrukcij: Splošna pravila, potresni vplivi in vplivi na stavbe, s prilogo: Nacionalni dodatek, Slovenski inštitut za standardizacijo, Ljubljana.

Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64, 691—700.

Xia, J., Miller, R. D., Park, C. B., Ivanov, J., Tian, G., Chen, C., 2004. Utilization of high-frequency Rayleigh waves in near-surface geophysics. The Leading Edge, 23/8, 753—759.

Zupančič, P., Šket Motnikar, B., Gosar, A., Prosen, T., 2004. Karta potresne mikrorajonizacije Mestne občine Ljubljana. Potresi v letu 2002, 32—54, ARSO, Urad za seizmologijo in geologijo.

Published

19-01-2024

Issue

Section

Research and development