Potenciali fotografij, posnetih s pametnim telefonom, za izmero prostovoljnih geografskih informacij

Authors

  • Mihaela Triglav Čekada Geodetski inštitut Slovenije, Jamova cesta 2, SI – 1000 Ljubljana, Slovenija in Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Jamova cesta 2, SI – 1000 Ljubljana, Slovenija https://orcid.org/0000-0002-4200-2616
  • Natalija Novak Geodetski inštitut Slovenije, Jamova cesta 2, SI – 1000 Ljubljana, Slovenija
  • Katja Oven Geodetski inštitut Slovenije, Jamova cesta 2, SI – 1000 Ljubljana, Slovenija

DOI:

https://doi.org/10.3986/GV93104

Keywords:

fotogrametrija, interaktivna orientacija fotografij, topografske spremembe, prostovoljne geografske informacije, fotografije posnete s pametnim telefonom, //, photogrammetry, interactive orientation of images, topographic changes, volunteered geographic information, smartphone images

Abstract

V članku so predstavljene posebnosti fotografij, posnetih s pametnimi telefoni in njihov potencial za zbiranje prostovoljnih geografskih informacij. Ločljivost in jasnost fotografij, posnetih s pametnim telefonom, je danes že enakovredna fotografijam posnetih s kompaktnimi digitalnimi fotoaparati, hkrati pa omogočajo sprotno shranjevanje lokacije fotografiranja. Na primeru obdelave posamezne fotografije s pomočjo interaktivne orientacije, so te prednosti ovrednotene z vidika njihovega potenciala za fotogrametrični zajem, ob ažuriranju topografskih kart. Kljub dobrim potencialom, pa na koncu obseg zornega polja fotografije odloča o tem ali bomo iz take fotografije lahko izmerili merske 3R-prostorske podatke. //

The potential of smartphone images for measuring volunteered geographic information

This article presents the characteristics of smartphone images and their potential for collecting the volunteered geographic information. Today the smartphone image quality is equivalent to those taken with compact digital cameras, and they allow the real-time storage of the location from where the image was taken. Taking the example of processing a single image by using interactive orientation, these advantages are evaluated in terms of their potential for photogrammetric measurements when updating topographic maps. Despite the promising potential, the field of view extent of an image ultimately determines whether we will be able to extract metric spatial 3D data from such an image.

References

Alsubaie, N., El-Sheimy, N. 2016: The easibility of 3D point cloud generation from smartphones. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41-B5. DOI: https://doi.org/10.5194/isprsarchives-XLI-B5-621-2016

Al-Hamad, A., Moussa, A., El-Sheimy, N. 2014: Video based mobile mapping system using smartphones. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40-1. DOI: https://doi.org/10.5194/isprsarchives-XL-1-13-2014

Berk, S. 2020: ETRS89-SI – brezplačni program za transformacije koordinat med slovenskimi realizacijami ETRS89. Geodetski vestnik 64-4.

Berk, S., Boldin, D. 2017: Slovenski referenčni koordinatni sistemi v okolju GIS. Geodetski vestnik 61-1.

Bozzini, C., Conedera, M., Krebs, P. 2012: A new monoplotting tool to extract georeferenced vector data and ortorectified raster data from oblique non-metric photographs. International Journal of Heritage in the Digital Era 1-3. DOI: https://doi.org/10.1260/2047-4970.1.3.499

Cignetti, M., Godone, D., Wrzesniak, A., Giordan, D. 2019: Structure from motion multisource application for landslide characterization and monitoring: The Champlas du Col Case study, Sestriere, North-Western Italy. Sensors 19-10. DOI: https://doi.org/10.3390/s19102364

Crisp, S. 2013: Camera sensor size: Why does it matter and exactly how big are they? New Atlas. Medmrežje: https://newatlas.com/camera-sensor-size-guide/26684/ (20. 5. 2021).

Dogša, J. 2014: Senzorji pametnih telefonov in implementacija senzorja pospeševanja. Diplomsko delo, Fakulteta za elektrotehniko, računalništvo in informatiko Univerze v Mariboru. Maribor.

Duhovnik, M., Kete, P., Boldin, D., Režek, J. 2016: Novi državni topografski podatkovni model kot podlaga za načrtovanje. Urbani izziv, posebna izdaja 6.

Gaiani, M., Apollonio, F. I., Fantini, F. 2019: Evaluating smartphones color fidelity and metric accuracy fort he 3D documentation of small artifacts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42-2/W11. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W11-539-2019

Goodchild, M. 2007: Citizens as sensors: the world of volunteered geography. GeoJournal 69-4. DOI: https://doi.org/10.1007/s10708-007-9111-y

Gruen, A., Akca, D. 2007: Mobile photogrammetry. Dreiländertagung SGPBF, DGPF und OVG. Basel.

Harley, M. D., Kinsela, M. A., Sánchez-García, E., Vos, K. 2019: Shoreline change mapping using crowd-sourced smartphone images. Coastal Engineering 150. DOI: https://doi.org/10.1016/j.coastaleng.2019.04.003

Jaud, M., Kervot, M., Delacourt, C., Bertin, S. 2019: Potential of smartphone SfM photogrammetry to measure coastal morphodynamics. Remote Sensing 11-19. DOI: https://doi.org/10.3390/rs11192242

Koler, B., Stopar, B., Sterle, O., Urbančič, T., Medved, K. 2019: Nov slovenski višinski sistem SVS2010. Geodetski vestnik 63-1. DOI: https://doi.org/10.15292/geodetski-vestnik.2019.01.27-40

Kosmatin Fras, M., Drešček, U., Lisec, A., Grigillo, D. 2020: Analiza vplivov na kakovost izdelkov UAV. Geodetski vestnik 64-4. DOI: https://doi.org/10.15292/geodetski-vestnik.2020.04.489-507

Kraus, K. 2004: Photogrammetry: Geometry from Images and Laser Scans. Berlin.

Medmrežje 1: https://www.stat.si/StatWeb/news/Index/8626 (9. 12. 2020).

Medmrežje 2: https://www.stat.si/StatWeb/News/Index/7115 (9. 12. 2020).

Medmrežje 3: https://fran.si/131/snb-slovar-novejsega-besedja/3622481/pametni?View=1&Query=sam&hs=478&All=sam&FilteredDictionaryIds=131 (21. 12. 2020).

Medmrežje 4: https://gis.akos-rs.si/HomePublic/OPTPogledResult/slo (10. 12. 2020).

Medmrežje 5: https://www.racunalniske-novice.com/novice/dogodki-in-obvestila/je-to-zdalec-najboljsi-telefon-za-fotografiranje.html (10. 12. 2020).

Medmrežje 6: https://www.monitor.si/novica/samsung-razvija-tipalo-s-600-milijoni-pik/197832/ (10. 12. 2020).

Medmrežje 7: https://www.gsmarena.com (10. 12. 2020).

Micheletti, N., Chandler, J. H., Lane, S. N. 2015: Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surface Processes and Landforms 40-4. DOI: https://doi.org/10.1002/esp.3648

Russo, M., Giugliano, A. M., Asciutti, M. 2019: Mobile phone imaging for CH fascade modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42-2/W17. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W17-287-2019

Robič, D. 2018: Stabilizacija in vplivi pri zajemanju panoramske fotografije. Diplomsko delo, Fakulteta za elektrotehniko, računalništvo in informatiko Univerze v Mariboru. Maribor.

Starček, K. 2016: Uporabna mobilnih naprav v izobraževanju. Magistrsko delo, Filozofska fakulteta Univerze v Mariboru. Maribor.

Šturm, T., Balaž, G., Simončič, M., Mesner, N. 2020: Geoportal AKOS – pregledovalnik podatkov o elektronskih komunikacijah. Geodetski vestnik 64-4.

Tavani, S., Pignalosa, A., Corradetti, A., Mercuri, M., Smeraglia, L., Riccardi, U., Seers, T., Pavlis, T., Billi, A. 2020: Photogrammetric 3D model via smartphone GNSS sensor: workflow, error estimate, and best practices. Remote Sensing 12-21. DOI: https://doi.org/10.3390/rs12213616

Tomažič, S., Sodnik, J. 2006: Kaj bo prinesla 4. generacija (4G) mobilne telefonije? Elektrotehniški vestnik 73-1.

Tomić, A. 2020: Test Huawei P40 Pro Plus – najboljši fotoaparat med telefoni. Monitor. Medmrežje: https://www.monitor.si/clanek/test-huawei-p40-pro-plus-najboljsi-fotoaparat-med-telefoni/199841/ (10. 12. 2020).

Travelletti, J., Delacourt, C., Allemand, P., Malet, J.-P., Schmittbuhl, J. Taussaint, R., Bastard, M. 2012: Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing 70. DOI: https://doi.org/10.1016/j.isprsjprs.2012.03.007

Triglav Čekada, M. 2017: Fotogrametrični in lidarski oblaki točk. Geografski vestnik 89-1. DOI: https://doi.org/10.3986/GV89106

Triglav Čekada, M., Barbo, P., Pavšek, M., Zorn, M. 2020: Changes in the Skuta Glacier (southeastern Alps) assessed using non-metric images. Acta geographica Slovenica 60-2. DOI: https://doi.org/10.3986/AGS.7674

Triglav Čekada, M., Bric, V., Zorn, M. 2014: How to decide which oblique image has the highest mapping potential for monoplotting method: a case studies on river erosion and floods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2-5. DOI: https://doi.org/10.5194/isprsannals-II-5-379-2014

Triglav Čekada, M., Lisec, A. 2019: Priložnosti za uporabo prostovoljnih geografskih informacij v okviru nacionalne prostorske podatkovne infrastrukture. Geodetski vestnik 63-2. DOI: https://doi.org/10.15292/geodetski-vestnik.2019.02.199-212

Triglav Čekada, M., Radovan, D. 2013: Using volunteered geographical information to map the November 2012 floods in Slovenia. Natural Hazards Earth System Sciences 13. DOI: https://doi.org/10.5194/nhess-13-2753-2013

Triglav Čekada, M., Radovan, D. 2019: Primerjava uporabe prostovoljnih geografskih informacij za spremljanje poplav in potresov. Geografski vestnik 91-2. DOI: https://doi.org/10.3986/GV91207

Triglav Čekada, M., Radovan, D., Gabrovec, M., Kosmatin Fras, M. 2011: Acquisition of the 3D boundary of the Triglav glacier from archived non-metric panoramic images. The Photogrammetric Record 26-133. DOI: https://doi.org/10.1111/j.1477-9730.2011.00622.x

Triglav Čekada, M., Zorn, M., Colucci, R. R. 2014: Area changes on Canin (Italy) and Triglav glaciers (Slovenia) from 1893 on based on archive imagery and lidar. Geodetski vestnik 58-2. DOI: https://doi.org/10.15292/geodetski-vestnik.2014.02.274-313

Wiesmann, S., Steiner, L., Pozzi, M., Bozzini, C., Bauder, A., Hurni, L. 2012: Reconstructing historic glacier states based on terrestrial oblique photographs. Proceedings – AutoCarto 2012. Columbus.

Downloads

Published

2021-12-31

Issue

Section

Articles/članki