Vpliv podnebnih sprememb na temperaturo vode v Sloveniji v 21. stoletju

Authors

  • Peter Frantar Agencija Republike Slovenije za okolje, Vojkova cesta 1b, SI – 1000 Ljubljana, Slovenija
  • Andrej Draksler TC Vode, Tematski center za raziskave, študije in razvoj projektov na vodah, d.o.o., Trnovski pristan 10, SI – 1000 Ljubljana, Slovenija

DOI:

https://doi.org/10.3986/GV94203

Keywords:

hidrologija, temperatura vode, temperatura zraka, površinska voda, podzemna voda, morje, podnebne spremembe, //, hydrology, water temperature, air temperature, surface water, groundwater, sea, climate change

Abstract

Temperatura morja, površinskih in podzemnih voda v Sloveniji kaže v zadnjih desetletjih naraščajoč trend. Predvidevamo, da bodo podnebne spremembe tudi v prihodnje prav tako vplivale na temperaturo vode, zato smo ocenili njihov vpliv do konca 21. stoletja. Na izbranih vodomernih postajah smo ocenili povezanost med homogeniziranimi nizi temperature vode in temperature zraka na primerjalnih meteoroloških postajah ter pripravili regresijske modele (linearne ali nelinearne) za oceno temperature vode.

Izračunane modelske nize temperature zraka po treh podnebnih scenarijih smo vstavili v izdelane regresijske modele ter izračunali temperaturo vode do konca 21. stoletja. Analizo ocene temperature vode v Sloveniji do konca 21. stoletja smo izvedli za 57 vodomernih postaj na površinskih vodah, podzemnih vodah in na morju. Rezultati kažejo na nadaljevanje dviga povprečne letne temperature vode po vseh treh podnebnih scenarijih, predstavljena je letna in sezonska analiza sprememb temperature vode na izbranih postajah. //

Climate change impacts on water temperature in Slovenia in the 21st century

Water temperature of the sea, surface and ground water has an increasing trend over the last decades in Slovenia. It is presumed that future climate changes will have an impact on water temperatures, therefore the impact by the end of the century was assessed with the use of air-water temperature correlation methodology. The correlation was assessed between homogenised air and water temperature datasets on comparable meteorological and hydrological stations. Regression models were then set up to estimate the water temperature based on climate scenarios data until the end of 21st century.

The analysis of water temperature by the end of 21st century was assessed for 57 stations on surface water, groundwater and at the sea. The results indicate the continuation of water temperature rise under all three climate change scenarios. The results of analysis show annual and seasonal change of water temperature for selected stations and the synthesis based on geographical characteristics.

References

Arismendi, I., Safeeq, M., Dunham, J. B., Johnson, S. L. 2014: Can air temperature be used to project influences of climate change on stream temperature? Environmental Research Letters 9-8. DOI: https://doi.org/10.1088/1748-9326/9/8/084015

ARSO 2021: Hidrološki arhiv. Mesečne statistike. Medmrežje: http://www.arso.gov.si/vode/podatki/arhiv/hidroloski_arhiv.html (2. 3. 2021).

Arvola, L., George, G., Livingstone, D., Järvinen, M., Blenckner, T., Dokulil, M., Jennings, E., Aonghusa, C. N., Nõges, P., Nõges, T., Weyhenmeyer, G. 2009: The impact of the changing climate on the thermal characteristics of lakes. The Impact of Climate Change on European Lakes. Dordrecht. DOI: https://doi.org/10.1007/978-90-481-2945-4_6

Bertalanič, R., Dolinar, M., Draksler, A., Honzak, L., Kobold, M., Kozjek, K., Lokošek, N., Medved, A., Vertačnik, G., Vlahović, Ž., Žust, A. 2018: Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja. Sintezno poročilo – prvi del, Agencija Republike Slovenije za okolje. Ljubljana. Medmrežje: http://www.meteo.si/uploads/probase/www/climate/text/sl/publications/OPS21_Porocilo.pdf (2. 3. 2021).

Benz, S. A., Bayer, P., Winkler, G., Blum, P. 2018: Recent trends of groundwater temperatures in Austria. Hydrology and Earth System Sciences 22-3. DOI: https://doi.org/10.5194/hess-22-3143-2018

Bonacci, O., Trninić, D., Roje-Bonacci, T. 2008: Analysis of the water temperature regime of the Danube and its tributaries in Croatia. Hydrological Processes 22-7. DOI: https://doi.org/10.1002/hyp.6975

Caldwell, P., Segura, C., Laird, S. G., Sun, G., McNulty, S. G., Sandercock, M., Boggs, J., Vose, J. M. 2014: Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. Hydrological Processes 29-9. DOI: https://doi.org/10.1002/hyp.10358

Dokulil, M. 2014: Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios. Hydrobiologia 731. DOI: https://doi.org/10.1007/s10750-013-1550-5

Draksler, A. 2016: Homogenizacija podatkovnih nizov temperatur vode ter analiza trendov na površinskih vodah, podzemnih vodah in morju, poročilo izvedbe 1. sklopa nalog. Interno poročilo projekta Ocena podnebnih sprememb do konca 21. stoletja. Agencija Republike Slovenije za okolje. Ljubljana.

Draksler, A. 2019: Ocena sprememb temperature vode v spremenjenem podnebju, končno poročilo. Interno poročilo projekta Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja. Agencija Republike Slovenije za okolje. Ljubljana.

Draksler, A., Frantar, P., Savić, V. 2018: Trendi temperatur površinskih in podzemnih voda do leta 2015 v Sloveniji. Ujma 32.

Draksler, A., Frantar, P., Savić, V., Vertačnik, G. 2017: Trendi temperatur vode v Sloveniji. Drugi slovenski kongres o vodah. Ljubljana.

Edinger, J. E., Duttweiler, D. W., Geyer, J. C. 1968: The response of water temperature to meteorological conditions Water Resources Research 4-5. DOI: https://doi.org/10.1029/WR004i005p01137

EEA - European Environment Agency 2009: Regional Climate Change and Adaptation: The Alps Facing the Challenge of Changing Water Resources. EEA Report 8/2009. Copenhagen. DOI: https://doi.org/10.2800/12552

EEA - European Environment Agency 2017: Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-based Report. EEA Report 1/2017. Copenhagen. DOI: https://doi.org/10.2800/534806

Erickson, T. R., Stefan, H. G. 2000: Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering 5-3. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317)

Frantar, P. 2004: Analiza temperaturnega režima in pojava ledu na Bohinjskem jezeru. Ujma 17-18.

Frantar, P. 2012: Temperaturni režimi rek v Sloveniji v obdobju 1976–1990 in spremembe režimov v obdobju 1991–2005. Geografski vestnik 84-2.

Frantar, P. 2013: Climate change effects on temperature and ice of the lake Bohinj, Slovenia. 32nd Intenational Conference on Alpine Meteorology. Ljubljana.

Hausfather, Z. 2019: Explainer: The high-emissions ‘RCP8.5’ global warming scenario. Carbon Brief, 21. 8. 2019. Medmrežje: https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario (2. 3. 2021).

Hemmerle, H., Bayer, P. 2020: Climate change yields groundwater warming in Bavaria, Germany. Frontiers in Earth Science 13-8. DOI: https://doi.org/10.3389/feart.2020.575894

Hrvatin, M., Zorn, M. 2017a: Trendi temperatur in padavin ter trendi pretokov rek v Idrijskem hribovju. Geografski vestnik 89-1. DOI: https://doi.org/10.3986/GV89101

Hrvatin, M., Zorn. M. 2017b: Trendi pretokov rek v slovenskih Alpah med letoma 1961 in 2010. Geografski vestnik 89-2. DOI: https://doi.org/10.3986/GV89201

IPCC 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. Medmrežje: https://www.ipcc.ch/report/ar5/wg1/ (2. 3. 2021).

Islam, S. U., Hay, R. W., Déry, S. J., Booth, B. 2019: Modelling the impacts of climate change on riverine thermal regimes in western Canada’s largest Pacific watershed. Scientific Reports 9. DOI: https://doi.org/10.1038/s41598-019-47804-2

IzVRS - Inštitut za vode Republike Slovenije 2012: Načrt upravljanja z morskim okoljem. Začetna presoja morskih voda v pristojnosti Republike Slovenije: Bistvene lastnosti in značilnosti morskih vod. Ljubljana.

Kędra, M. 2020: Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 12-1. DOI: https://doi.org/10.3390/w12010283

Livingstone, D., Lotter, A. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau. Journal of Paleolimnology 19. DOI: https://doi.org/10.1023/A:1007904817619

McCombie, A. M. 1959: Some relations between air temperatures and the surface water temperature of lakes. Limnology and Oceanography 4-3. DOI: https://doi.org/10.4319/lo.1959.4.3.0252

Menberg, K., Blum, P., Kurylyk, B. L., Bayer, P. 2014: Observed groundwater temperature response to recent climate change. Hydrology and Earth System Sciences 18-11. DOI: https://doi.org/10.5194/hess-18-4453-2014

Mohseni, O., Stefan, H. G., Erickson, T. R. 1998: A nonlinear regression model for weekly stream temperatures. Water Resources Research 34-10. DOI: https://doi.org/10.1029/98WR01877

MOP - Ministrstvo za okolje in prostor 2017: Načrt upravljanja z morskim okoljem 2017–2021, priloga. Medmrežje: https://www.gov.si/assets/ministrstva/MOP/Dokumenti/Voda/NUMO/nacrt-UMD.pdf (2. 3. 2021).

Morrill, J. C., Bales, R. C., Conklin, M. H. 2005: Estimating stream temperature from air temperature: Implications for future water quality. Journal of Environmental Engineering 131-1. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

Pastor, F., Valiente, J. A., Palau, J. L. 2018: Sea surface temperature in the Mediterranean: Trends and spatial patterns (1982–2016). Pure and Applied Geophysics 175. DOI: https://doi.org/10.1007/s00024-017-1739-z

Perroud, M., Goyette, S. 2010: Impact of warmer climate on lake Geneva water-temperature profiles. Boreal Environment Research 15.

Persson, I., Jones, I., Sahlberg, J., Dokulil, M., Hewitt, D., Leppäranta, M., Blenckner, T. 2005: Modeled thermal response of three European lakes to a probable future climate. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29-2. DOI: https://doi.org/10.1080/03680770.2005.11902762

Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E., Santoleri, R., Buongiorno Nardelli, B. 2020: New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sensing 12-1. DOI: https://doi.org/10.3390/rs12010132

Pletterbauer, F., Melcher, A., Graf, W. 2018: Climate change impacts in riverine ecosystems. Riverine Ecosystem Management. Cham. DOI: https://doi.org/10.1007/978-3-319-73250-3_11

Punzet, M., Voß, F., Voß, A., Kynast, E., Bärlund, I. 2012: A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates. Journal of Hydrometeorology 13-3. DOI: https://doi.org/10.1175/JHM-D-11-0138.1

Rabi, A., Hadzima-Nyarko, M., Šperac, M. 2015: Modelling river temperature from air temperature: Case of the River Drava (Croatia). Hydrological Sciences Journal 60-9. DOI: https://doi.org/10.1080/02626667.2014.914215

Riedel, T. 2019. Temperature-associated changes in groundwater quality. Journal of Hydrology 572. DOI: https://doi.org/10.1016/j.jhydrol.2019.02.059

Shaltout, M., Omstedt, A. 2014: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56-3. DOI: https://doi.org/10.5697/oc.56-3.411

Shuter, B. J., Schlesinger, D. A., Zimmerman, A. P. 1983: Empirical predictors of annual surface water temperature cycles in North American lakes. Canadian Journal of Fisheries and Aquatic Sciences 40-10. DOI: https://doi.org/10.1139/f83-213

SST CEAMed 2021: Mediterranean sea surface temperature portal, Temperature. Medmrežje: http://www.ceam.es/ceamet/SST/index.html (2. 3. 2021).

Stefan, H. G, Preud'homme E. B. 1993: Stream temperature estimation from air temperature. Water Resources Bulletin 29-1. DOI: https://doi.org/10.1111/j.1752-1688.1993.tb01502.x

Šamanić, L. 2018: Vpliv srebrnoproge napihovalke Lagocephalus sceleratus na ekosistem vzhodnega Mediterana. Magistrsko delo, Pedagoška fakulteta Univerze v Ljubljani. Ljubljana.

van Vliet, M., Ludwig, F., Zwolsman, G., Weedon, G., Kabat, P. 2011: Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research 47-2. DOI: https://doi.org/10.1029/2010WR009198

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., Rose, S. K. 2011: The representative concentration pathways: An overview. Climatic Change 109. DOI: https://doi.org/10.1007/s10584-011-0148-z

Vertačnik, G., Vičar, Z., Bertalanič, R. 2015: Kontrola in homogenizacija podnebnih podatkov. Podnebna spremenljivost Slovenije v obdobju 1961–2011. Ljubljana. Medmrežje: https://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/Kontrola%20in%20homogenizacija%20splet.pdf (2. 3. 2021).

Vodenik, B., Robič, M., Kobold, M. 2008: Vpliv podnebnih sprememb na temperaturo površinskih voda. 19. Mišičev vodarski dan 2008. Maribor.

Webb, M. S. 1974: Surface temperatures of Lake Erie. Water Resources Research 10-2. DOI: https://doi.org/10.1029/WR010i002p00199

Downloads

Published

2022-12-31

How to Cite

Frantar, P., & Draksler, A. (2022). Vpliv podnebnih sprememb na temperaturo vode v Sloveniji v 21. stoletju. Geografski Vestnik, 94(2), 45–79. https://doi.org/10.3986/GV94203

Issue

Section

Articles/članki