Od kakovosti tal do ekosistemskih storitev tal

Authors

DOI:

https://doi.org/10.3986/GV94205

Keywords:

naravni kapital, ekosistemske storitve, upravljanje z naravnimi viri, kazalniki kakovosti tal, funkcije tal, modeliranje, //, natural capital, ecosystem services, natural resource management, soil quality indicators, soil functions, modelling

Abstract

Kakovost tal lahko definiramo kot kontinuirano sposobnost tal za zagotavljanje ekosistemskih storitev (ES). Znanost o tleh prepoznava pet glavnih funkcij tal, ki zagotavljajo ES: (i) primarna produkcija, (ii) čiščenje in uravnavanje vode, (iii) skladiščenje ogljika in uravnavanje podnebja, (iv) biotska pestrost in zagotavljanje habitatov ter (v) zagotavljanje in kroženje hranil. ES ocenjujemo po naslednjih pristopih: (i) na podlagi kazalnikov, pri katerih ocene ES tal temeljijo na poenostavljenih približkih izbranih lastnosti tal; (ii) na empiričnih povezavah med lastnostmi tal in funkcijami tal (statični pristop) in (iii) na podlagi modeliranja talnih procesov v času (dinamični pristop). Število modelov in orodij za ocenjevanje ES tal narašča, vendar pa je vprašljivo, v kolikšni meri se ocene približajo realni porazdelitvi in zastopanosti posamezne ES v prostoru. Nujni so kakovostni vhodni podatki o tleh, izbor robustnih kazalnikov kakovosti tal za ocenjevanje ES in nadaljnji razvoj modelov ter orodij za ocenjevanje funkcij tal in ES v smeri zmanjševanja negotovosti. Slovenija šele postavlja koncept ES tal, zato je namen prispevka na osnovi pregleda literature osvetliti razvoj konceptov in pristopov njihovega ocenjevanja v mednarodnem prostoru. //

From soil quality to soil ecosystem services

Soil quality is defined as the continued capacity of soils to provide ecosystem services (ES). Soil science identifies five main soil functions that provide ES: (i) primary production, (ii) water purification and regulation, (iii) carbon sequestration and climate regulation, (iv) biodiversity and habitat provision, and (v) provisioning and nutrient cycling. Three categories of ES assessments can be distinguished: (i) indicator approaches that use simplified approximations based on key soil properties as indicators, (ii) static approaches that apply empirical relationships to link soil properties to soil functions, and (iii) dynamic approaches that apply biophysical methods to integrate soil, climate, and environmental factors to model soil processes over time. Many decision-support tools have emerged, but the extent to which estimates of ES approximate the actual distribution and representation of each ES in space is questionable. High-quality soil input data, selection of robust soil quality indicators for ES assessment, and further development of models and tools for assessing soil functions and ES to reduce uncertainty are essential. Slovenia is in the process of establishing the concept of soil ES. Therefore, based on a literature review, this paper aims to show the development of concepts and approaches for ES assessment at the international level.

References

Adhikari, K., Hartemink, A. E. 2016: Linking soils to ecosystem services – A global review. Geoderma 262. DOI: https://doi.org/10.1016/j.geoderma.2015.08.009

Aryal, K., Maraseni, T., Apan, A. 2022: How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations. Science of the Total Environment 806-3. DOI: https://doi.org/10.1016/j.scitotenv.2021.151229

Bagstad, K. J., Cohen, E., Ancona, Z. H., McNulty, S. H., Sun G. 2018: The sensitivity of ecosystem service models to choices of input data and spatial resolution. Applied Geography 93. DOI: https://doi.org/10.1016/j.apgeog.2018.02.005

Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L., Sparks, D. L. 2019: Soil functions: Connecting Earth's critical zone. Annual Review of Earth and Planetary Sciences 47. DOI: https://doi.org/10.1146/annurev-earth-063016-020544

Barrios, E. 2007: Soil biota, ecosystem services and land productivity. Ecological Economics 64. DOI: https://doi.org/10.1016/j.ecolecon.2007.03.004

Bartkowski, B., Bartke, S., Helming, K., Paul, C., Techen, A. K., Hansjürgens, B. 2020: Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. PeerJ 8. DOI: https://doi.org/10.7717/peerj.8749

Bartkowski, B., Hansjürgens, B., Möckel, S., Bartke, S. 2018: Institutional economics of agricultural soil ecosystem services. Sustainability 10-7. DOI: https://doi.org/10.3390/su10072447

Bastida, F., Zsolnay, A., Hernández, T., García, C. 2008: Past, present and future of soil quality indices: A biological perspective. Geoderma 147. DOI: https://doi.org/10.1016/j.geoderma.2008.08.007

Baveye, P. C., Baveye, J., Gowdy, J. 2016: Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Frontiers in Environmental Science 4. DOI: https://doi.org/10.3389/fenvs.2016.00041

Bennett, L. T., Mele, P. M., Annett, S., Kasel, S. 2010: Examining links between soil management, soil health, and public benefits in agricultural landscapes: an Australian perspective. Agriculture, Ecosystems and Environment 139. DOI: https://doi.org/10.1016/j.agee.2010.06.017

Bouma, J. 2014: Soil science contributions towards sustainable development goals and their implementation: Linking soil functions with ecosystem services. Journal of Plant Nutrition and Soil Science 177-2. DOI: https://doi.org/10.1002/jpln.201300646

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., Brussaard, L. 2018: Soil quality – a critical review. Soil Biology and Biochemistry 120. DOI: https://doi.org/10.1016/j.soilbio.2018.01.030

Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., Staffilani, F., Tarocco, P. 2016: A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 261. DOI: https://doi.org/10.1016/j.geoderma.2015.07.013

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., van den Belt, M. 1997a: The value of the world’s ecosystem services and natural capital. Nature 387. DOI: https://doi.org/10.1038/387253a0

Costanza, R., Cumberland, J., Daly, H., Goodland, R., Norgaard, R. 1997b: An Introduction to Ecological Economics. Boca Raton.

COST CA18237 2019: European Soil-Biology Data Warehouse for Soil Protection. Medmrežje: https://www.cost.eu/actions/CA18237/ (26. 4. 2022).

Daily, G. 1997: Nature’s Services: Societal Dependence on Natural Ecosystems. Washington.

Dazzi, C., Lo Papa, G. 2022: A new definition of soil to promote soil awareness, sustainability, security and governance. International Soil and Water Conservation Research 10-1. DOI: https://doi.org/10.1016/j.iswcr.2021.07.001

Debeljak, M., Trajanov, A., Kuzmanovski, V., Schröder, J., Sandén, T., Spiegel, H., Wall, D. P., de Broek, M. V., Rutgers, M., Bampa, F., Creamer, R. E., Henriksen, C. B. 2019: A field-scale decision support system for assessment and management of soil functions. Frontiers in Environmental Science 7. DOI: https://doi.org/10.3389/fenvs.2019.00115

Dominati, E., Patterson, M., Mackay, A. 2010: A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics 69-9. DOI: https://doi.org/10.1016/j.ecolecon.2010.05.002

Dominati, E., Mackay, A., Green, S., Patterson, M. 2014a: A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecological Economics 100. DOI: https://doi.org/10.1016/j.ecolecon.2014.02.008

Dominati, E., Mackay, A., Lynch, B., Heath, N., Millner, I. 2014b: An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosystem Services 9. DOI: https://doi.org/10.1016/j.ecoser.2014.06.006

Doran, J. W., Parkin, T. B. 1994: Defining and assessing soil quality. Defining Soil Quality for a Sustainable Environment. Madison.

Doran, J. W., Parkin, T. B. 1996: Quantitative indicators of soil quality: a minimum data set. Methods for Assessing Soil Quality. Madison. DOI: https://doi.org/10.2136/sssaspecpub49

Drobnik, T., Greiner, L., Keller, A., Grêt-Regamey, A. 2018: Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators 94. DOI: https://doi.org/10.1016/j.ecolind.2018.06.052

Duval, M. E., Galantini, J. A., Martinez, J. M., Lopez, F. M., Wall, L. G. 2016: Sensitivity of different soil quality indicators to assess sustainable land management: Influence of site features and seasonality. Soil and Tillage Research 159. DOI: https://doi.org/10.1016/j.still.2016.01.004

Ellili-Bargaoui, Y., Walter, C., Lemercier, B., Michot, D. 2021: Assessment of six soil ecosystem services by coupling simulation modelling and field measurement of soil properties. Ecological Indicators 121. DOI: https://doi.org/10.1016/j.ecolind.2020.107211

EASAC 2018: Opportunities for soil sustainability in Europe. Policy report 36, EASAC Secretariat. Halle.

European Commission 2006: Thematic Strategy for Soil Protection. Commission of the European Communities. Brussels.

European Commission 2022: A Soil Deal for Europe – 100 living labs and lighthouses to lead the transition towards healthy soils by 2030. Medmrežje: https://ec.europa.eu/info/sites/default/files/research_and_innovation/funding/documents/soil_mission_implementation_plan_final_for_publication.pdf (15. 3. 2022).

European Environment Agency 2019: The European environment: state and outlook 2020: knowledge for transition to a sustainable Europe. Luxembourg. DOI: https://data.europa.eu/doi/10.2800/085135

Faber, J. H., Cousin, I., Meurer, K. H. E., Hendriks, C. M. J., Bispo, A., Viketoft, M., ten Damme, L., Montagne, D., Hanegraaf, M. C., Gillikin, A., Kuikman, P., Obiang-Ndong, G., Bengtsson, J., Taylor, A. 2022: Stocktaking for Agricultural Soil Quality and Ecosystem Services Indicators and their Reference Values. Report, EJP SOIL Internal Project SIREN Deliverable 2.

Glenk, K., McVittie, A., Moran, D. 2012: Soil and Soil Organic Carbon within an Ecosystem Services Approach Linking Biophysical and Economic Data. Cupar.

Greiner, L., Keller, A., Grêt-Regamey, A., Papritz, A. 2017: Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 69. DOI: https://doi.org/10.1016/j.landusepol.2017.06.025

Grêt-Regamey, A., Sirén, E., Brunner, S. H., Weibel, B. 2017: Review of decision support tools to operationalize the ecosystem services concept. Ecosystem Services 26-B. DOI: https://doi.org/10.1016/j.ecoser.2016.10.012

Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A., Faber, J. H., Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J. P., Martins Da Silva, P., Carvalho, F., Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., Bardgett, R. D., De Vries, F. T., Bolger, T., Dirilgen, T., Schmidt, O., Winding, A., Hendriksen, N. B., Johansen, A., Philippot, L., Plassart, P., Bru, D., Thomson, B., Griffiths, R. I., Bailey, M. J., Keith, A., Rutgers, M., Mulder, C., Hannula, S. E., Creamer, R., Stone, D. 2016: Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators 69. DOI: https://doi.org/10.1016/j.ecolind.2016.04.023

Haines-Young, R., Potschin, M., Chesire, D. 2006: Defining and Identifying Environmental Limits for Sustainable Development. Full technical report, DEFRA Overview Report Project Code NR0102. Nottingham.

Haines-Young, R., Potschin, M. B. 2018: Common International Classification of Ecosystem Services (CICES): V5.1 and Guidance on the Application of the Revised Structure. Nottingham.

Helming, K., Daedlow, K., Paul, C., Techen, A. K., Bartke, S., Bartkowski, B., Kaiser, D., Wollschläger, U., Vogel, H.-J. 2018: Managing soil functions for a sustainable bioeconomy-assessment framework and state of the art. Land Degradation and Development 29-9. DOI: https://doi.org/10.1002/ldr.3066

Hewitt, A., Dominati, E., Webb, T., Cuthill, T. 2015: Soil natural capital quantification by the stock adequacy method. Geoderma 241. DOI: https://doi.org/10.1016/j.geoderma.2014.11.014

Jónsson, J. Ö. G., Davíðsdóttir, B., Nikolaidis, N. P. 2017: Valuation of soil ecosystem services. Advances in Agronomy 142. DOI: https://doi.org/10.1016/bs.agron.2016.10.011

Karlen, D. L., Andrews, S. S., Doran, J. W. 2001: Soil quality: current concepts and applications. Advances in Agronomy 74. DOI: https://doi.org/10.1016/S0065-2113(01)74029-1

Keesstra, S. D., Bouma, J.,Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L. O. 2016: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2-2. DOI: https://doi.org/10.5194/soil-2-111-2016

Lilburne, L., Eger, A., Mudge, P., Ausseil, A. G., Stevenson, B., Herzig, A., Beare, M. 2020: The Land Resource Circle: supporting land-use decision making with an ecosystemservice-based framework of soil functions. Geoderma 363. DOI: https://doi.org/10.1016/j.geoderma.2019.114134

MAES 2018: Mapping and Assessment of Ecosystems and their Services; Soil ecosystems. Report 1.2. Luxembourg. DOI: https://doi.org/10.2779/41384

Martins, M. D. R., Angers, D. A. 2015: Different plant types for different soil ecosystem services. Geoderma 237. DOI: https://doi.org/10.1016/j.geoderma.2014.09.013

MEA 2005: Ecosystems and Human Wellbeing: Synthesis. Washington. Medmrežje: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (26. 4. 2022).

Medmrežje 1: https://esdac.jrc.ec.europa.eu/projects/lucas (26. 4. 2022).

Medmrežje 2: https://ec.europa.eu/ (26. 4. 2022).

Medmrežje 3: https://ejpsoil.eu (26. 4. 2022).

Merrington, G. 2006: The Development and Use of Soil Quality Indicators for Assessing the Role of Soil in Environmental Interactions. The Environment Agency Science Report SC030265. Bristol.

Mooney, H., Ehrlich, P. 1997: Ecosystem services: A fragmentary history. Nature’s Services: Societal Dependence on Natural Ecosystems. Washington.

Motiejūnaitė, J., Børja, I., Ostonen, I., Bakker, M. R., Bjarnadottir, B., Brunner, I., Iršėnaitė, R., Mrak, T., Oddsdóttir E. S., Lehto, T. 2019. Cultural ecosystem services provided by the biodiversity of forest soils: A European review. Geoderma 343. DOI: https://doi.org/10.1016/j.geoderma.2019.02.025

Paul, C., Kuhn, K., Steinhoff-Knopp, B., Weißhuhn, P., Helming, K. 2020: Towards a standardization of soil-related ecosystem service assessments. European Journal of Soil Science 72-4. DOI: https://doi.org/10.1111/ejss.13022

Pereira, P., Bogunovic, I., Muñoz-Rojas, M., Brevik, E. C. 2018: Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science and Health 5. DOI: https://doi.org/10.1016/j.coesh.2017.12.003

Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Pérès, G., Rutgers, M. 2012: Soil biodiversity, biological indicators and soil ecosystem services–an overview of European approaches. Current Opinion in Environmental Sustainability 4. DOI: https://doi.org/10.1016/j.cosust.2012.10.009

Robinson, D. A., Lebron, I., Vereecken, H. 2009: On the definition of the natural capital of soils: A framework for description, evaluation, and monitoring. Soil Science Society of America Journal 73. DOI: https://doi.org/10.2136/sssaj2008.0332

Robinson, D. A., Lebron, I. 2010: On the natural capital and ecosystem services of soils. Ecological Economics 70. DOI: https://doi.org/10.1016/j.ecolecon.2010.08.012

Rodrigues, A. F., Latawiec, A. E., Reid, B. J., Solórzano, A., Schuler, A. E., Lacerda, C., Fidalgo, E. C. C., Scarano, F. R., Tubenchlak, F., Pena, I., Vicente-Vicente, J. L., Korys, K. A., Cooper, M., Fernandes, N. F., Prado, R. B., Maioli, V., Dib, V., Teixeira, W. G. 2021: Systematic review of soil ecosystem services in tropical regions. Royal Society Open Science 8-3. DOI: https://doi.org/10.1098/rsos.201584

Rutgers, M., Mulder, C., Schouten, A., Bloem, J., Bogte, J., Breure, A., Brussaard, L., Goede, R. DeFaber, J., Keidel, H. 2008: Soil ecosystem profiling in the Netherlands with ten references for biological soil quality. RIVM report 607604009. Bilthoven.

Rutgers, M., van Wijnen, H. J., Schouten, A. J., Mulder, C., Kuiten, A. M. P., Brussaard, L. 2012: A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of Total Environment 415. DOI: https://doi.org/10.1016/j.scitotenv.2011.04.041

Rutgers, M., Jensen, J. 2011: Site-specific ecological risk assessment. Dealing with Contaminated Sites. Dordrecht. DOI: https://doi.org/10.1007/978-90-481-9757-6_15

Sandén, T., Trajanov, A., Spiegel, H., Kuzmanovski, V., Saby, N. P. A., Picaud, C., Henriksen, C. B., Debeljak, M. 2019: Development of an agricultural primary productivity decision support model: A case study in France. Frontiers in Environental Sciences 7. DOI: https://doi.org/10.3389/fenvs.2019.00058

Schon, N. L., Dominati, E. J. 2020: Valuing earthworm contribution to ecosystem services delivery. Ecosystem Services 43. DOI: https://doi.org/10.1016/j.ecoser.2020.101092

Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O'Donoghue, C., O'hUallachain, D. 2014: Functional land management: a framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science and Policy 38. DOI: https://doi.org/10.1016/j.envsci.2013.10.002

Schwilch, G., Bernet, L., Fleskens, L., Giannakis, E., Leventon, J., Marañón, T., Mills, J., Short, C., Stolte, J., van Delden, H., Verzandvoort, S. 2016: Operationalizing ecosystem services for the mitigation of soil threats: A proposed framework. Ecological Indicators 67. DOI: https://doi.org/10.1016/j.ecolind.2016.03.016

Suhadolc, M. 2013: Biotski indikatorji kakovosti tal. Novi izzivi v agronomiji 2013. Ljubljana.

Šmid Hribar, M., Japelj, A., Vurunić, S. 2021: Systematic mapping of studies on ecosystem services in Slovenia. Geografski vestnik 93-1. DOI: https://doi.org/10.3986/GV93101

TEEB 2010: The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations. London, Washington.

van Leeuwen, J. P., Saby, N. P. A., Jones, A., Louwagie, G., Micheli, E., Rutgers, M., Schulte, R. P. O., Spiegel, H., Toth, G., Creamer, R. E. 2017: Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environmental Research Letters 12. DOI: https://doi.org/10.1088/1748-9326/aa9c5c

van Wijnen, H. J., Rutgers, M., Schouten, A. J., Mulder, C., de Zwart, D., Breure A. M. 2012: How to calculate the spatial distribution of ecosystem services – Natural attenuation as example from The Netherlands. Science of the Total Environment 415. DOI: https://doi.org/10.1016/j.scitotenv.2011.05.058

Velasquez, E., Lavelle, P., Andrade, M. 2007: GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry 39-12. DOI: https://doi.org/10.1016/j.soilbio.2007.06.013

Vogel, H. J., Eberhardt, E., Franko, U., Lang, B., Liess, M., Weller, U., Wiesmeier, M., Wollschlager, U. 2019: Quantitative evaluation of soil functions: potential and state. Frontiers in Environmental Science 7. DOI: https://doi.org/10.3389/fenvs.2019.00164

Vrščaj, B. 2017: Lastnosti, pestrost in ekosistemske storitve tal. Ljubljana.

Wall, D. P., Delgado, A., O'Sullivan, L., Creamer, R. E., Trajanov, A., Kuzmanovski, V., Bugge Henriksen, C., Debeljak, M. 2020: A decision support model for assessing the water regulation and purification potential of agricultural soils across Europe. Frontiers in Sustainable Food Systems 4. DOI: https://doi.org/10.3389/fsufs.2020.00115

Downloads

Published

2022-12-31

Issue

Section

Articles/članki